The Tripartite Separability of Density Matrices of Graphs

نویسندگان

  • Zhen Wang
  • Zhixi Wang
چکیده

The density matrix of a graph is the combinatorial laplacian matrix of a graph normalized to have unit trace. In this paper we generalize the entanglement properties of mixed density matrices from combinatorial laplacian matrices of graphs discussed in Braunstein et al. [Annals of Combinatorics, 10 (2006) 291] to tripartite states. Then we prove that the degree condition defined in Braunstein et al. [Phys. Rev. A, 73 (2006) 012320] is sufficient and necessary for the tripartite separability of the density matrix of a nearest point graph.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditions for separability in generalized Laplacian matrices and nonnegative matrices as density matrices

Recently, Laplacian matrices of graphs are studied as density matrices in quantum mechanics. We continue this study and give conditions for separability of generalized Laplacian matrices of weighted graphs with unit trace. In particular, we show that the Peres-Horodecki positive partial transpose separability condition is necessary and sufficient for separability in C2 ⊗ C. In addition, we pres...

متن کامل

Separability of Density Matrices of Graphs for Multipartite Systems

We investigate separability of Laplacian matrices of graphs when seen as density matrices. This is a family of quantum states with many combinatorial properties. We firstly show that the well-known matrix realignment criterion can be used to test separability of this type of quantum states. The criterion can be interpreted as novel graph-theoretic idea. Then, we prove that the density matrix of...

متن کامل

Some families of density matrices for which separability is easily tested

We reconsider density matrices of graphs as defined in [quant-ph/0406165]. The density matrix of a graph is the combinatorial laplacian of the graph normalized to have unit trace. We describe a simple combinatorial condition (the “degree condition”) to test separability of density matrices of graphs. The condition is directly related to the PPT-criterion. We prove that the degree condition is n...

متن کامل

Separability of Tripartite Quantum Systems

i pi = 1. Many separability criteria have been found in recent years. For pure states, the problem is completely solved, e.g., by using the Schmidt decomposition [1]. For mixed states, there are separability criteria such as PPT, reduction, majorization, realignment etc. [2, 3, 4, 5, 6]. In [7] the authors have given a lower bound of concurrence for tripartite quantum states which can be used t...

متن کامل

On graphs whose Laplacian matrix's multipartite separability is invariant under graph isomorphism

Normalized Laplacian matrices of graphs have recently been studied in the context of quantum mechanics as density matrices of quantum systems. Of particular interest is the relationship between quantum physical properties of the density matrix and the graph theoretical properties of the underlying graph. One important aspect of density matrices is their entanglement properties, which are respon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2007